Motherboard

Motherboard

A motherboard is the central printed circuit board (PCB) in some complex electronic systems, such as modern personal computers. The motherboard is sometimes alternatively known as the mainboard, system board, or, on Apple computers, the logic board.[1] It is also sometimes casually shortened to mobo.[2]Contents [show]

Overview

Most computer motherboards produced today are designed for IBM-compatible computers, which currently account for around 90% of global personal computer sales[citation needed]. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also hosts the central processing unit, and other subsystems and devices.

Motherboards are also used in many other electronics devices.

A typical desktop computer has its microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.

An important component of a motherboard is the microprocessor’s supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.

Modern motherboards include, at a minimum:

  1. sockets (or slots) in which one or more microprocessors are installed[3]
  2. slots into which the system’s main memory is installed (typically in the form of DIMM modules containing DRAM chips)
  3. a chipset which forms an interface between the CPU’s front-side bus, main memory, and peripheral buses
  4. non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system’s firmware or BIOS
  5. a clock generator which produces the system clock signal to synchronize the various components
  6. slots for expansion cards (these interface to the system via the buses supported by the chipset)
  7. power connectors flickers, which receive electrical power from the computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[4]

The Octek Jaguar V motherboard from 1993.[5] This board has 6 ISA slots but few onboard peripherals, as evidenced by the lack of external connectors.
Additionally, nearly all motherboards include logic and connectors to support commonly-used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example on the Apple II, and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.

Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heatsinks and mounting points for fans to dissipate excess heat.

CPU sockets

Integrated peripherals
Block diagram of a modern motherboard, which supports many on-board peripheral functions as well as several expansion slots.

With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly-integrated motherboards are thus especially popular in small form factor and budget computers.

For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:

  1. disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
  2. integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
  3. integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
  4. fast Ethernet network controller for 10/100 Mbit networking
  5. USB 2.0 controller supporting up to 12 USB ports
  6. IrDA controller for infrared data communication (e.g. with an IrDA enabled Cellular Phone or Printer)
  7. temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components

Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago, however as of April 2007 such highly-integrated motherboards are available for as little as $30 in the USA.

Peripheral card slots
A typical motherboard of 2007 will have a different number of connections depending on its standard. A standard ATX motherboard will typically have 1x PCI-E 16x connection for a graphics card, 2x PCI slots for various expansion cards and 1x PCI-E 1x which will eventually supersede PCI.

A standard Super ATX motherboard will have 1x PCI-E 16x connection for a graphics card. It will also have a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. This varies between brands and models.

Some motherboards have 2x PCI-E 16x slots to allow more than 2 monitors without special hardware or to allow use of a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together to allow better performance in intensive graphical computing tasks such as gaming and video editing.

As of 2007, virtually all motherboards come with at least 4x USB ports on the rear with at least 2 connections on the board internally for wiring additional front ports that are built into the computers case. Ethernet is also included now. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard to allow sound to be output without the need for any extra components. This allows computers to be far more multimedia based than before. Cheaper machines now often have their graphics chip built into the motherboard rather than a separate card.

Temperature and reliability
Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the northbridge, in modern motherboards. If the motherboard is not cooled properly, then this can cause the motherboard to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heatsinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Some higher-powered computers (which typically have high-performance processors and large amounts of RAM, as well as high-performance video cards) use a water-cooling system instead of many fans.

Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.

A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]
For more information on premature capacitor failure on PC motherboards, see capacitor plague.

Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C,[9] their expected design life roughly doubles for every 10 °C below this. At 45 °C a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard, however many manufacturers have delivered substandard capacitors,[citation needed] which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but tedious and time-consuming, to find and replace failed capacitors on PC motherboards; it is less expensive to buy a new motherboard than to pay for such a repair.[citation needed]

Form factor

microATX form factor motherboard
Motherboards are produced in a variety of sizes and shapes (”form factors”), some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers which have not traditionally been built from commodity components.

Laptop computers generally use highly integrated, miniaturized, and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Nvidia SLI and ATI Crossfire
Nvidia SLI and ATI Crossfire technology allows 2 or more of the same series graphics cards to be linked together to allow a faster graphics experience. Almost all medium to high end Nvidia cards and most high end ATI cards support the technology.

They both require compatible motherboards. There is an obvious need for 2x PCI-E 16x slots to allow 2 cards to be inserted into the computer. The same function can be acheived in 650i motherboards by NVIDIA, with a pair of x8 slots. Originally, tri-Crossfire was achieved at 8x speeds with 2 16x slots and 1 8x slot albeit at a slower speed. ATI opened the technology up to Intel in 2006 and such all new Intel chipsets support Crossfire.

SLI is a little more proprietary in its needs. It requires a motherboard with Nvidia’s own NForce chipset series to allow it to run (exception: Intel X58 chipset).

It is important to note that SLI and Crossfire will not usually scale to 2x the performance of a single card when using a dual setup. They also do not double the effective amount of VRAM or memory bandwidth.

Motherboard

A motherboard is the central printed circuit board (PCB) in some complex electronic systems, such as modern personal computers. The motherboard is sometimes alternatively known as the mainboard, system board, or, on Apple computers, the logic board.[1] It is also sometimes casually shortened to mobo.[2]Contents [show]

Overview

Most computer motherboards produced today are designed for IBM-compatible computers, which currently account for around 90% of global personal computer sales[citation needed]. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also hosts the central processing unit, and other subsystems and devices.

Motherboards are also used in many other electronics devices.

A typical desktop computer has its microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.

An important component of a motherboard is the microprocessor’s supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.

Modern motherboards include, at a minimum:

  1. sockets (or slots) in which one or more microprocessors are installed[3]
  2. slots into which the system’s main memory is installed (typically in the form of DIMM modules containing DRAM chips)
  3. a chipset which forms an interface between the CPU’s front-side bus, main memory, and peripheral buses
  4. non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system’s firmware or BIOS
  5. a clock generator which produces the system clock signal to synchronize the various components
  6. slots for expansion cards (these interface to the system via the buses supported by the chipset)
  7. power connectors flickers, which receive electrical power from the computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[4]

The Octek Jaguar V motherboard from 1993.[5] This board has 6 ISA slots but few onboard peripherals, as evidenced by the lack of external connectors.
Additionally, nearly all motherboards include logic and connectors to support commonly-used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example on the Apple II, and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.

Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heatsinks and mounting points for fans to dissipate excess heat.

CPU sockets

Integrated peripherals
Block diagram of a modern motherboard, which supports many on-board peripheral functions as well as several expansion slots.

With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly-integrated motherboards are thus especially popular in small form factor and budget computers.

For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:

  1. disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
  2. integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
  3. integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
  4. fast Ethernet network controller for 10/100 Mbit networking
  5. USB 2.0 controller supporting up to 12 USB ports
  6. IrDA controller for infrared data communication (e.g. with an IrDA enabled Cellular Phone or Printer)
  7. temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components

Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago, however as of April 2007 such highly-integrated motherboards are available for as little as $30 in the USA.

Peripheral card slots
A typical motherboard of 2007 will have a different number of connections depending on its standard. A standard ATX motherboard will typically have 1x PCI-E 16x connection for a graphics card, 2x PCI slots for various expansion cards and 1x PCI-E 1x which will eventually supersede PCI.

A standard Super ATX motherboard will have 1x PCI-E 16x connection for a graphics card. It will also have a varying number of PCI and PCI-E 1x slots. It can sometimes also have a PCI-E 4x slot. This varies between brands and models.

Some motherboards have 2x PCI-E 16x slots to allow more than 2 monitors without special hardware or to allow use of a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together to allow better performance in intensive graphical computing tasks such as gaming and video editing.

As of 2007, virtually all motherboards come with at least 4x USB ports on the rear with at least 2 connections on the board internally for wiring additional front ports that are built into the computers case. Ethernet is also included now. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard to allow sound to be output without the need for any extra components. This allows computers to be far more multimedia based than before. Cheaper machines now often have their graphics chip built into the motherboard rather than a separate card.

Temperature and reliability
Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the northbridge, in modern motherboards. If the motherboard is not cooled properly, then this can cause the motherboard to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heatsinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Some higher-powered computers (which typically have high-performance processors and large amounts of RAM, as well as high-performance video cards) use a water-cooling system instead of many fans.

Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.

A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]
For more information on premature capacitor failure on PC motherboards, see capacitor plague.

Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C,[9] their expected design life roughly doubles for every 10 °C below this. At 45 °C a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard, however many manufacturers have delivered substandard capacitors,[citation needed] which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but tedious and time-consuming, to find and replace failed capacitors on PC motherboards; it is less expensive to buy a new motherboard than to pay for such a repair.[citation needed]

Form factor

microATX form factor motherboard
Motherboards are produced in a variety of sizes and shapes (”form factors”), some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007, most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers which have not traditionally been built from commodity components.

Laptop computers generally use highly integrated, miniaturized, and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.

Nvidia SLI and ATI Crossfire
Nvidia SLI and ATI Crossfire technology allows 2 or more of the same series graphics cards to be linked together to allow a faster graphics experience. Almost all medium to high end Nvidia cards and most high end ATI cards support the technology.

They both require compatible motherboards. There is an obvious need for 2x PCI-E 16x slots to allow 2 cards to be inserted into the computer. The same function can be acheived in 650i motherboards by NVIDIA, with a pair of x8 slots. Originally, tri-Crossfire was achieved at 8x speeds with 2 16x slots and 1 8x slot albeit at a slower speed. ATI opened the technology up to Intel in 2006 and such all new Intel chipsets support Crossfire.

SLI is a little more proprietary in its needs. It requires a motherboard with Nvidia’s own NForce chipset series to allow it to run (exception: Intel X58 chipset).

It is important to note that SLI and Crossfire will not usually scale to 2x the performance of a single card when using a dual setup. They also do not double the effective amount of VRAM or memory bandwidth.

Leave a Reply

Your email address will not be published. Required fields are marked *